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Abstract
Goal orientation is an increasingly recognized paradigm
for eliciting, structuring, analyzing and documenting sys-
tem requirements. Goals are statements of intent ranging
from high-level, strategic concerns to low-level, technical
requirements on the software-to-be and assumptions on its
environment. Achieving goals require the cooperation of
agents such as software components, input/output devices
and human agents. The assignment of responsibilities for
goals to agents is a critical decision in the requirements
engineering process as alternative agent assignments
define alternative system proposals.
The paper describes a systematic technique to support the
process of refining goals, identifying agents, and exploring
alternative responsibility assignments. The underlying
principles are to refine goals until they are assignable to
single agents, and to assign a goal to an agent only if the
agent can realize the goal.
There are various reasons why a goal may not be realiz-
able by an agent, e.g., the goal may refer to variables that
are not monitorable or controllable by the agent. The
notion of goal realizability is first defined on formal
grounds; it provides a basis for identifying a complete tax-
onomy of realizability problems. From this taxonomy we
systematically derive a catalog of tactics for refining goals
and identifying agents so as to resolve realizability prob-
lems. Each tactics corresponds to the application of a for-
mal refinement pattern that relieves the specifier from
verifying the correctness of refinements in temporal logic.
Our techniques have been used in two case studies of sig-
nificant size; excerpts are shown to illustrate the main
ideas.

Keywords
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1. IN TRO DU CTI ON

Requirements engineering (RE) is concerned with the iden-
tification of goals to be achieved by the envisioned system,
the refinement of such goals and their operationalization
into specifications of services and constraints, and the
assignment of responsibilities for the resulting requirements
to agents such as humans, devices and software [Lam00c].

Goal-oriented RE refers to the use of goals for requirements
elicitation, elaboration, organization, specification, analy-
sis, negotiation, documentation and evolution [Lam01].

Goals are objectives to be achieved by the system under
consideration. The word “system” here refers to the soft-
ware-to-be together with its environment [Fic92]. Goals are
formulated in terms of optative statements [Zav97] which
may refer to functional or non-functional properties and
range from high-level concerns (such as “safe transportation“
for a flight control system) to lower-level ones (such as
“FlightPathAngle mode engaged until aircraft near desired alti-
tude“).

Goals play a prominent role in the RE process [Lam01].
They drive the elaboration of requirements to support them
[Rub92, Dar93, Ant98, Kai00]. They provide a criterion for
requirements completeness and pertinence [Yue87]. They
induce rich specification structuring mechanisms such as
goal AND-decomposition/composition for specification
refinement/abstraction and OR-decomposition for reasoning
about alternatives [Myl92, Dar93, Chu00]. Goals thereby
provide a rationale for requirements and allow one to trace
low-level details back to high-level concerns. The higher-
level a goal is, the more stable it is likely to be; goals are
thus essential elements for managing requirements evolu-
tion [Lam01]. Last but not least, goals have been recog-
nized to be the roots at which conflicts can be detected and
resolved [Rob89, Boe95, Lam98].

Agents  are active system components (or “processors”)
which may have choice of behavior to ensure the goals they
are assigned to [Fea87]. Achieving goals in general requires
the cooperation of multiple agents. For example, the high-
level goal of “safe transportation“ might require the coopera-
tion of the pilot, the autopilot software, the on-board TCAS
software, the on-ground tracking system, etc. The essence
of goal refinement is to decompose a goal into subgoals so
that each subgoal requires the cooperation of fewer agents;
the refinement process stops when goals are reached that
can be assigned as responsibility of single agents [Dar93].
Terminal goals assigned to agents in the software-to-be
become requirements ; terminal goals assigned to agents in
the environment become assumptions (or normative poli-
cies) --the latter cannot be enforced by the software-to-be
[Lam00a]. In general, alternative responsibility assignments
are to be explored; for example, the goal “reverse thrust
enabled when landing plane on runway”  [Lad95, Jac95] might
be assigned to the Pilot  or the Autopilot agent. Different goal

 Proceedings ICSE’2002,
24th International Conference on Sofware Engineering,
ACM Press, May 2002



refinement and assignment alternatives yield alternative
system proposals in which more or less features are auto-
mated.
Clearly, a goal should be assigned to an agent only if the lat-
ter has sufficient capabilities to ensure it; the agent should
be able to “realize” the goal in some sense to be defined. For
example, consider a simplified specification of the goal just
introduced:

MovingOnRunway ⇒ o ReverseThrustEnabled (G1)

(where “o“ is the standard temporal logic operator for refer-
ing to the next state.) The Autopilot agent cannot realize this
goal because it cannot monitor whether the plane is moving
on the runway; in this case, the goal has a condition in its
antecedent which is not shared by the agent and its environ-
ment [Jac95].
Surprisingly enough, such notion of goal realizability has
not been studied so far in the literature. Goal realizability is
important on a methodological standpoint as goal-oriented
requirements elaboration might be driven by the process of
refining high-level, unrealizable goals until realizable sub-
goals are reached that can be assigned to single agents; fur-
thermore such a process might drive the identification of
potential agents as well. 
The purpose of the paper is to address this problem by
defining precisely what it means for a goal to be realizable
by an agent, and by proposing a comprehensive set of con-
structive tactics for refining unrealizable goals towards real-
izable subgoals and assignable agents. Each tactics
corresponds to a refinement pattern; such patterns comple-
ment the ones discussed in [Dar96] in that they are agent-
driven and guarantee strict progress towards realizable sub-
goals.
In the simple example above, one of our tactics would pro-
duce a refinement of the unrealizable goal G1 above into a
functional subgoal

WheelsTurning ⇒ o ReverseThrustEnabled  (G2)

together with the following assumption on the environment
MovingOnRunway ⇔ WheelsTurning  (Ass)

(Obstacle analysis would reveal that this assumption is in
fact too strong because of the possibility of, e.g., plane
aquaplaning on a wet runway --but this is another story
[Lam00a].)
The functional subgoal G2  is still not realizable by the Auto-
pilot  agent because this agent cannot directly monitor
whether the wheels of the plane are turning. Applying one
of our tactics again would produce a further refinement of
goal G2 into an accuracy subgoal

WheelsTurning ⇔ WheelsPulseOn (G3)

and a functional subgoal
WheelsPulseOn ⇒ o ReverseThrustEnabled (G4)

The accuracy subgoal G3  is now realizable by a WheelsSen-
sor agent whereas the functional subgoal G4 is realizable by
the Autopilot agent. 
The rest of the paper is organized as follows. Section 2
introduces our formal model of agents. Section 3 presents a

semantic definition of goal realizability based on this
model. Section 4 gives a necessary and sufficient set of con-
ditions for realizability that provides a practical basis for
checking whether a goal is realizable or not. This set of con-
dition yields a taxonomy of unrealizability problems that
can be shown to be complete; a comprehensive set of tactics
for resolving unrealizability through refinement is derived
systematically from this taxonomy in Section 5. The tactics
provide systematic guidance for recursively refining goals
and identifying agents; alternative tactics allow alternative
goal refinements, agent interfaces and responsibility assign-
ments to be explored. Section 6 provides a few snapshots
from a real case study to illustrate the main ideas.
The paper provides a lightweight version of our technique in
order to increase readability and stick to space limitations.
A more formal treatment is available in [Let01].

2. M O DE LI NG  AG E NT S

The techniques in this paper are described in the context of
the KAOS framework for goal-oriented requirements elabo-
ration [Dar93, Lam98, Lam00c]. A KAOS application
model is specified as a composition of four submodels: a
goal model in which the goals to be achieved are described
together with their refinement/conflict links; an object
model in which the application objects involved are
described together with their relationships; an operation
model in which the services that operationalize the goals are
described; and an agent model in which the agents are
described together with their interfaces and responsibilities
with respect to goals and operations. Each model has a sepa-
rate semantics, and is related to the others through inter-
model consistency rules [Dar93, Let01].
Our focus in this section is on the semantic foundation for
the agent model. Our agent framework extends Feather’s
notion of agent [Fea87], Parnas’ 4-variable model [Par95]
and Jackson’s principle of shared phenomena [Jac95].
An agent is characterized by the following items:

• an interface which declares two disjoint sets of state
variables: a set of variables that the agent monitors and a
set of variables that the agent controls;

• a transition system composed of an initial condition on
the agent’s controlled states and a “next state” total rela-
tion that maps each temporal sequence of states of moni-
tored/controlled variables to a next state of controlled
variables;

• a responsibility relation  that maps the agent to the set of
goals the agent is responsible for.

A state variable corresponds to an object attribute or rela-
tionship from the KAOS object model. A system state is
defined as a mapping that assigns a value to each state vari-
able [Man92].
Multiple agents run non-deterministically and concurrently;
they interact through shared variables. In order to avoid
interference between concurrent agents, each state variable
can be controlled by at most one agent. (If a variable needs
to be controlled by more than one agent, one can split the



variable into several variables, each controlled by a single
agent.) A single variable can be monitored by several
agents.
The agent interface component in our framework extends
the 4-variable model [Par95] to a 2N-variable model;
instead of one single software agent with one pair of input/
output devices we consider N agents; some of them are soft-
ware agents, others are sensors or actuators, others are
humans, etc. In the KAOS language, agent interfaces can be
represented by context diagrams in the spirit of [Jac95].
The agent transition system component provides the seman-
tic domain for the KAOS operation model; the “next state”
relation of an agent corresponds to applications of opera-
tions that are assigned to the agent and operationalize the
goals the agent is responsible for. An agent run is an infinite
sequence of system states generated by the transition system
of the agent.
The agent responsibility component in our framework links
agents to goals. A goal prescribes some set of possible his-
tories of the system; a history is a temporal sequence of sys-
tem states. A real-time linear temporal logic is therefore
natural for specifying goals [Man92, Koy92, Dar93,
Lam00b]. The following temporal operators will be used in
this paper:

o (in the next state) • (in the previous state)

◊ (some time in the future) q (always in the future)

W (always in the future unless) U (always in the future until)

A ⇒  C (in every future state A implies C)

@  P (P holds in the current state and not in the previous state 
 i.e., • ¬ P ∧ P )

◊≤ku P (P holds in some future state within k time units u)

q≤d  P (P holds in every future state up to some deadline d)

Assigning responsibility for a goal to an agent means that
this agent must restrict its behavior so as to ensure the goal
[Fea87, Dar93]. This is captured through the following
responsibility consistency rule between the responsibility
relation and the transition system of the agent:

if Responsible (ag, G)  then RUN(ag)  ⊆ HIST(G)
where RUN(ag)  denotes the set of all possible runs of agent
ag and HIST(G) denotes the set of all possible histories pre-
scribed by goal G.
To illustrate our agent framework briefly, consider the stan-
dard mine pump example in which water level has to be
controlled [Kra83, Jos96]. There are three agents: PumpCon-
troller, HighSensor and LowSensor. The HighSensor agent has
WaterLevel as monitored variable and HighWaterSignal as con-
trolled variable; the PumpController agent has HighWaterSignal
and LowWaterSignal as monitored variables and PumpSwitch
as controlled variable. The PumpController agent might be
assigned the following goal:

HighWaterSignal = ‘On’ ⇒ o PumpSwitch = ‘On’

The responsibility consistency rule constrains the transition
system of PumpController to be such that any run of this agent
is among the possible histories prescribed by the goal asser-
tion. 

The responsibility assignment of a goal to an agent is further
constrained by the monitoring and control capabilities of
that agent. This is captured through the concept of realiz-
ability we discuss now.

3. G O AL RE ALI ZAB IL IT Y

Our aim here is to provide a precise criterion for determin-
ing whether a goal is assignable to an agent. 
We first provide a semantic definition of what it means for a
goal to be realizable by an agent, that is, a definition in
terms of agent runs and system histories. The next section
will then provide an equivalent, more syntactic character-
ization to be used for checking realizability in practice. In
the sequel, we will use the following notations:

Mon(ag): set of monitored variables of agent ag
Ctrl(ag): set of controlled variables of agent ag
State(V): set of all possible states of variables in set V
Path(V):  set of all possible sequences of states of vari-

ables in set V

Definition (Realizability). A goal G is realizable by agent
ag iff there exists a transition system 

∆ag = <Initag, Nextag> 
with

• Initag ⊆ State(Ctrl(ag))

• Nextag ⊆ Path(Mon(ag) ∪ Ctrl(ag)) × State(Ctrl(ag))

such that 
RUN(ag) = HIST(G).

To illustrate this definition, we first come back to the goal
Maintain[PumpSwitchOnWhenHighWaterDetected]:

HighWaterSignal = ‘On’ ⇒ o PumpSwitch = ‘On’

This goal is realizable by the PumpController agent; the latter
monitors the HighWaterSignal variable and controls the
PumpSwitch variable; a transition system whose set of runs is
equal to the set of histories prescribed by the goal is given
by the pair <Init,Next> such that

s ∈ Init for all s ∈ State(Ctrl(PumpController))
(p, s) ∈ Next iff 

if pn(HighWaterSignal) = On then s(PumpSwitch) = On

(where pn denotes the last state of path p and s(v) denotes
the value of variable v in state s).
Consider now the goal Maintain[PumpMotorOnWhenHighWater]: 

WaterLevel ≥ ‘High’ ⇒ o PumpMotor = ‘On’

In this case no transition system can be found for the Pump-
Controller agent since the WaterLevel state variable is not
among the agent’s monitored variables and the PumpMotor
state variable is not among the agent’s controlled variables;
this goal is therefore not realizable by the PumpController
agent.
With respect to the responsibility consistency rule in the
previous section, we now require that the agent be able to
achieve the goal without being more restrictive than
required by the goal. To illustrate why we require equality



in the realizability condition above, let us consider the goal
Maintain[PumpSwitchOnWhenHighWater], defined by:

WaterLevel ≥  ‘High’ ⇒ o PumpSwitch = ‘On’

The PumpController agent controls the PumpSwitch  variable,
but does not monitor the WaterLevel variable. The agent
could ensure this goal by always keeping the PumpSwitch
variable set to ‘On’, regardless of the value of the WaterLevel
variable. The following agent transition system could thus
be identified:

s ∈ Init for all s ∈ State(Ctrl(PumpController))
(p, s) ∈ Next iff s(PumpSwitch ) = On

The agent runs generated by this transition system corre-
spond to histories that satisfy the following assertion:

o q PumpSwitch = ‘On’

Such histories are stronger than those required by the goal.
The equality requirement in our realizability condition thus
prevents the PumpController agent from being responsible for
the goal Maintain[PumpSwitchOnWhenHighWater] because this
agent cannot ensure the goal without being more restrictive
than required by the goal.

Note that realizability requires only the existence of an
appropriate transition system, that is, the possibility for the
agent to achieve the goal without being more restrictive than
required by it; the actual transition system of the agent may
be stronger than required by the goal. When several goals
are assigned to the same agent, the actual transition system
of that agent will generally be stronger than required by any
single goal.

Our notion of realizability can be viewed as the counterpart
at the goal level of the notion of realizable program specifi-
cation [Aba89]; a specification there is said to be realizable
if there exists a program that implements it. There are how-
ever two important differences: our notion of realizability
explicitly refers to the variables monitored and controlled
by the agent, and we require the existence of a transition
system whose behaviors are equal to the set of histories
admitted by the goal, whereas only inclusion is required in
[Aba89]. 

4. IDE NT IFYIN G UNR EAL IZ ABI LI TY  PR OB L EM S

Our aim now is to check whether a goal is realizable by
some agent. If the goal is realizable, the agent may be candi-
date for responsibility assignment; if it is not, goal refine-
ment should proceed further until realizable subgoals are
reached. An additional concern is therefore to identify the
cause of unrealizability so that appropriate elaboration tac-
tics can be proposed to resolve the problem.

To show that a goal is not realizable by an agent, necessary
and sufficient conditions for unrealizability can be used to
avoid the brute force approach of showing that RUN(ag) ≠
HIST(G) for all possible agent transition systems [Let01].
This approach is still not practical though because such con-
ditions are still defined at the semantic level in terms of sets
of histories prescribed by the goal. Furthermore, it does not

provide sufficient explanation about why the goal is not
realizable by the agent.
An equivalent, more pragmatic characterization of realiz-
ability can be found in terms of syntactical conditions that
can be checked more easily and provide such explanation.

To define these conditions, we partition the set of variables
involved in the formulation of a goal into two subsets: the
set C of state variables that are intended to be constrained
by the goal and the set M of all other state variables. For an
Achieve goal taking the form P ⇒ ◊ T for some current con-
dition P and target condition T, for example, one will typi-
cally find the C and M variables in T and P, respectively.
A goal G can then be viewed as a relation

GM,C ⊆ Hist(M) × Hist(C)
where Hist(M) and Hist(C) denote the set of all possible his-
tories of state variables in M and C, respectively. For exam-
ple, the goal Maintain[PumpMotorOnWhenHighWater] is
intended to constrain the PumpMotor variable and can be
viewed as a relation between histories of the water level and
histories of the pump motor. (This relation amounts at the
goal level to a relation REQ between histories of monitored
and controlled variables in the 4-variable model [Par95].)
The following theorem defines conditions on a goal relation
GM,C under which the goal G is not realizable by an agent.

Theorem (Pragmatic conditions for unrealizability). 

A goal G is not realizable by an agent ag if and only if one
of the following independent conditions holds at least.

(1) Lack of monitorability: the goal definition refers to some
state variable in M but not in Mon(ag) ∪ Ctrl(ag): 

M  Mon(ag) ∪ Ctrl(ag)

(2) Lack of controllability: the goal requires some state
variable not in Ctrl(ag) to be controlled: 

C  Ctrl(ag)

(3) Reference to future: the goal constrains the values of
some variable in C in terms of future values of variables
in M.

(4) External unachievability: some external condition B on
unconstrained variables in M makes the goal impossible
to achieve:

B |= ¬ G with  B |≠ false

(5) Unbounded achievement: the goal does not constrain the
finite behaviors of ag.

The full proof of this theorem is fairly long and technical;
the interested reader may download it from [Let01]. We
provide some intuitive arguments here to relate conditions
(1)-(5) to the semantic definition of realizability in Section 3.

• Lack of monitorability and lack of controllability pre-
vent a goal from being realizable by an agent because
the definition of realizability requires the existence of a
transition system for the agent that is defined in terms of
variables monitored and controlled by it. 

• Reference to the future prevents a goal from being real-

⊆

⊆



izable by an agent because the “next state” relation of
any transition system for the agent constrains the next
state of controlled variables in terms of the previous val-
ues of monitored and controlled variables.

• External unachievability means that there are histories
on variables not controllable by the agent which falsify
the goal for every possible history of the agent’s con-
trolled variables. Since any transition system for an
agent can only constrain the values of its controlled vari-
ables, no transition system for the agent can prevent
such falsification; hence the goal is not realizable by the
agent.

• Unbounded achievement means that the agent could
indefinitely postpone the satisfaction of the goal, here
taking the form P ⇒ ◊ T or P ⇒ Q U T for some current
condition P, target condition T and other condition Q,
without ever violating it along any finite run prefix in
any transition system for the agent.

• Furthermore, the theorem states that the set of unrealiz-
ability conditions (1)-(5) is complete . When all of the
conditions of the theorem are false, one can indeed con-
struct a transition system for the agent from the goal
assertion so that the set of runs generated by this transi-
tion system is equal to the set of histories defined by the
goal. The intuition is roughly as follows (see [Let01] for
technical details). Since all variables constrained by the
goal are controlled by the agent and all other variables in
the goal assertion are monitored or controlled by it, the
goal relation GM,C defines a relation between histories of
variables monitored and controlled by the agent, respec-
tively. Since the goal formulation does not refer to future
states of unconstrained variables and since there is no
external condition on these variables that inhibit goal
achievement, this relation between histories of moni-
tored and controlled variables is total and may be
mapped to a transition system for the agent. By con-
struction, the set of finite sequences of states generated
by this transition system equals the set of finite
sequences of states that do not violate the goal in finite
time. Since the goal is not a liveness property, this also
means that the set of runs of the transition system equals
the set of histories prescribed by the goal. 

To illustrate the various unrealizability conditions above, let
us first consider the following goal for an ambulance des-
patching system [LAS93].

Goal Achieve [AmbulanceMobilized]

InformalDef For every urgent call reporting an incident, an avail-
able ambulance able to arrive at the incident scene within 11
minutes should be mobilized. The ambulance mobilization time
should be less than 3 minutes .

FormalDef ∀ c: UrgentCall, inc: Incident

@ Reporting (c, inc)

⇒  ◊≤3m ∃ amb: Ambulance

• Available(amb) ∧ Mobilized (amb) 

∧ amb.Destination = inc.Location

∧ • TimeDist (amb.Location, inc.Location) ≤ 11

This goal is intended to constrain the state variables
Mobilized(amb) and amb.Destination from values of the other
state variables referenced in the goal. This goal is not realiz-
able by the ambulance despatching software agent for the
following reasons:

– lack of monitorability: the state variables inc.Location ,
amb.Location and Available(amb) are not among the
agent’s monitored or controlled variables, that is, the
agent cannot monitor the actual incident location,
ambulance location and ambulance availability;

– lack of controllability: the state variables Mobi-
lized(amb) and amb.Destination, to be controlled, are
not among the agent’s controlled variables, that is,
the agent cannot control the actual mobilization and
destination of ambulances,

– external unachievability: the goal cannot be achieved
under the agent’s responsibility when there is no
available ambulance near the incident scene.

This example combines three of the conditions above; each
one would be sufficient for unrealizability. 

Let us now illustrate the other conditions. Consider the fol-
lowing “utility” goal for the railroad crossing problem
[Hei96]:

Goal Maintain[GateOpenWhenNoTrain]

InformalDef When no train will be in the crossing during the next
d time units, the gate should be opened.

FormalDef ∀ cr: Crossing

q≤d  ¬ (∃ tr: Train) InCrossing (tr, cr)

⇒ cr.Gate = ‘open’

This goal is intended to constrain the variable cr.Gate. It is
not realizable by the GateController software agent because
the value of the variable cr.Gate is constrained by future val-
ues of the variable InCrossing; moreover, this agent cannot
monitor the variable InCrossing(tr,cr) and cannot control the
variable cr.Gate (the GateController agent only controls the
signal sent to the gate). Similarly, the goal

∀ tr: Train 

Moving (tr) ⇒ tr.Doors = ‘closed’

is unrealizable by the TrainController agent because the latter
cannot monitor the variable Moving and control the variable
Doors within the same state; no transition system allows con-
trolled variables to be constrained by the current value of
monitored variables. This particular case of reference to
future is called synchronization problem.

Identifying a “reference to future” problem is not necessar-
ily easy; a number of frequent temporal logic patterns of ref-
erence to the future are given in [Let01] to support the task.

The practical interest of the theorem above is that (a) it pro-
vides some guidance in the refinement process by explain-
ing why the goal is not realizable by an agent, and (b) it
gives a necessary and sufficient characterization of unrealiz-
ability from which a complete taxonomy of unrealizability
problems can be built to define a comprehensive set of tac-
tics for unrealizability resolution.



5. RE SO LV ING  U NRE ALI ZAB IL IT Y  PRO BL E MS

We now suggest a constructive technique for identifying
agents and their capabilities, and for refining goals into sub-
goals until the latter are realizable by single agents. The
general principle is to provide a catalog of specification
elaboration tactics whose applications are driven by the
need to resolve unrealizability problems. Specific tactics are
provided for each unrealizability condition in the theorem
given in the previous section; the entire space of unrealiz-
ability problems is therefore covered. 

The tactics provide systematic guidance for recursively
refining goals and for identifying new agents. They may
produce new objects as well; new, enriched versions of the
goal, agent and object models may thus be obtained thereby.
Alternative goal refinements are explored through the appli-
cation of alternative tactics. 

In the same spirit as [Dar96], formal refinement patterns are
associated with each tactics; the patterns are proved correct
once for all; the specifier is thus relieved from the tedious
task of verifying every pattern instantiation.

We first suggest what a single tactics may look like before
outlining our catalog of tactics and highligthing a few tac-
tics that will be used on a real example in the next section.

5.1 Describing agent-based refinement tactics

Each tactics is defined by the following items:

• a motivation  that describes the process-level objective
addressed by the tactics; 

• a precondition  that characterizes the conditions on the
current specification model under which the tactics may
be applied;

• some heuristics  that suggests when the tactics should
typically be applied;

• a postcondition that characterizes the state of the specifi-
cation model after application of the tactics, in terms of
effects on the goal model, the agent model, and the
object model;

• variants  and specializations  of the tactics (if any);

• an example of using the tactics.

The following frequently used tactics illustrates this.
Tactics Introduce Accuracy Goal

Precondition: Agent ag  cannot monitor some variable m appear-
ing in goal G in order to realize that goal.

Heuristics: The tactics should be applied when an intermediate
variable im can be identified as “image” of m so that im can be
related to m through some accuracy goal or domain property.

Postcondition:

- Object model: a new attribute or relationship is introduced to cap-
ture the image im of attribute/relationship m.

- Goal model: the unrealizable goal G  is refined into (i) a subgoal
whose definition refers to variable im instead of m,  and (ii) a
companion accuracy goal that relates im to m. There are two
alternative ways of applying the tactics according to the two fol-
lowing formal AND-refinement:

Variants: Introduce non-ideal accuracy goals involving tolerances
and delays.

Specializations: Introduce Tracking Object; Introduce Sensor
Agent

Example of use:

5.2 The catalog of agent-based refinement tactics

Each unrealizability condition from the theorem in Section
4 gives rise to a set of tactics for resolving the correspond-
ing unrealizability problem. Because the taxonomy of unre-
alizability problems defined by this theorem is complete,
the space of unrealizability problems is fully covered by our
tactics. A tactics specialization hierarchy is associated with
each specific unrealizability condition. The set of tactics
found so far for each such condition is of course not com-
plete; the tactics shown below were obtained by abstraction
from a great number of examples in the literature on specifi-
cation [Let01] and from several industrial case studies; the
symmetry between lack of monitorability and lack of con-
trollability was exploited as well.

To give an idea of what our current catalog looks like, Fig-
ures 1-5 outline portions of specialization hierarchies for the
various unrealizability conditions. The reader may refer to
[Let01] for more details and many examples of use.

q (im = m)

(accuracy goal on variable) (accuracy goal on predicate)

G [m / im] G [p(m) / q(im)] q(im) ⇔ p(m)

GG

WheelsPulseOn ⇔ WheelsTurning

WheelsTurning ⇒ o  ReverseThrustEnabled

WheelsPulseOn ⇒

 o ReverseThrustEnabled

Figure 1 - Tactics for resolving lack of monitorability

Add monitorability Split lack of monitorability

Introduce accuracy goal

Split with milestone

Split by chaining Split by cases

Replace unmonitorable state
by monitorable events

Resolve lack of monitorability

Figure 2 - Tactics for resolving lack of controllability

Add controllability Split lack of controllability

Introduce actuation goal

Split with milestone

Split by chaining Split by cases

Replace uncontrollable state
by controllable events

Resolve lack of controllability



Further specialized tactics could be explored by identifying
specialized ways of resolving unrealizability problems for
specific goal categories (such as satisfaction goals, informa-
tion goals, security goals, usability goals, and so forth
[Dar93]). The basic idea for such specialized tactics would
be similar in spirit to the idea of using problem frames
[Jac01].
We now highlight a few tactics that will be used on a real
example in the next section. For example, the Introduce
Tracking Object specialization of the tactics Introduce Accuracy
Goal introduced before is defined as follows.

Tactics Introduce Tracking Object

Specializes Introduce Accuracy Goal

Heuristics: This tactics should be considered when lack of moni-
torability for an object Ob can be resolved by maintaining an
internal image of the object.

Postcondition:

- Object model: If the unmonitorable variable m is an attribute of
some object Ob, an intermediate variable m’ is modelled as an
attribute of a new object ObInfo representing an internal image
of the object Ob. A Tracking relationship is also introduced to
relate the objects Ob and ObInfo:

- Goal model: The unrealizable goal G  is refined into the subgoals

Maintain[ObjectTracked],
Maintain[AccurateObjectInfo],
G [Object /  ObjectInfo]

The first subgoal requires that every object Ob is related to an
object ObInfo by a one-to-one Tracking relationship. The sec-
ond subgoal is an accuracy goal relating an object and its
image. The third subgoal is obtained roughly by replacing refer-
ences to the actual object by references to the object’s image. 

Example of use: Consider the patient monitoring problem [Ste74,
Jac95] and the goal Achieve[AlarmForCriticalPulseRate],
defined as follows:

∀ p: Patient
p.PulseRate ∉ p.SafePulse 
⇒ ◊ (∃ al: Alarm) al.Raised ∧ al.Location = p.BedNr

To resolve the lack of monitorability of the patient’s pulse rate,
safe pulse range and bed number by the PatientMonitoring soft-
ware agent, the tactics is instantiated as follows:

Ob: Patient m: PulseRate, SafePulse, BedNr

ObInfo: PatientInfo m’: PulseRate, SafePulse, BedNr

The following three subgoals are thereby produced:

Goal Maintain [PatientTracked]
FormalDef (∀ p: Patient)(∃! pi: PatientInfo) Tracking (pi, p)

∧ ∀ p: Patient, pi: PatientInfo
Tracking (pi, p) ⇒ q Tracking (pi, p)

Goal Maintain [AccuratePatientInfo]
FormalDef ∀ p: Patient, pi: PatientInfo 

Tracking (pi, p) ⇒ pi.PulseRate = p.PulseRate 
∧ pi.SafePulse = p.SafePulse 
∧ pi.BedNr = p.BedNr

Goal Achieve [AlarmForCriticalPulseRateInfo]
FormalDef ∀ pi: PatientInfo

pi.PulseRate ∉ pi.SafePulse 
⇒ ◊ (∃ al: Alarm) al.Raised ∧ al.Loc = pi.BedNr

The tactics Split Lack of Controllability With Milestone appears
among the tactics for resolving lack of controllability in Fig-
ure 2. It is defined as follows.

Tactics Split Lack of Controllability With Milestone
Motivation:  Resolve lack of controllability
Precondition:  The unrealizable goal is an Achieve goal of the

form P ⇒ ◊ T and the agent cannot control a variable appear-
ing in the target condition T .

Heuristics: The tactics is worth being considered when an inter-
mediate milestone M can be identified for reaching the target T
from P.

Postcondition:
- Object model: the object model is enriched with the new objects,

attributes and relationships appearing in the definition of the
milestone predicate M.

- Goal model: the Achieve goal is refined according to the follow-
ing milestone-driven refinement pattern (or one of its variants)
[Dar95, Dar96]:

Example of use: Consider the patient monitoring problem and the
goal Achieve[NurseInterventionForCriticalPulseRate] , defined
as follows:

∀ p: Patient
p.PulseRate ∉ p.SafePulse 
⇒ ◊ (∃ n: Nurse) Intervention (n, p)

To resolve the lack of controllability of the predicate Interven-
tion(n,p) by the PatientMonitoring software agent, the tactics is
instantiated as follows:

M:  (∃ al: Alarm) al.Raised ∧ al.Loc = p.BedNr

A new Alarm entity is thereby introduced; the goal is refined into
the following two subgoals:

Goal Achieve [AlarmForCriticalPulseRate]
FormalDef ∀ p: Patient:

p.PulseRate ∉ p.SafePulse 
⇒ ◊ (∃ al: Alarm): al.Raised ∧ al.Loc = p.BedNr

Figure 3 - Tactics for resolving reference to future
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and
Goal Achieve [NurseInterventionForAlarm]

FormalDef ∀ al: Alarm, p: Patient:
al.Raised ∧ al.Loc = p.BedNr 
⇒ ◊ (∃ n: Nurse) Intervention (n, p)

The tactics Prevent Unachievability appears among the tactics
for resolving external unachievability in Figure 4. It is
defined as follows.

Tactics Prevent Unachievability
Motivation: Resolve external unachievability.
Precondition: The goal G is unsatisfiable when the unachievabil-

ity condition B holds.
Heuristics: The tactics is worth being applied when G  is a safety

goal and the unachievability condition B cannot be tolerated.
(Otherwise one can consider the alternative tactics Weaken
Goal With Unachievability  Condition.)

Postcondition: the unachievable goal is refined according to the
following refinement pattern:

Example of use: Consider an ambulance dispatching system and
the goal Achieve[AmbulanceMobilizedInSector] , defined by

∀ inc: Incident, s: Sector
inc.Reported ∧ InSector (inc, s)
⇒  ◊≤3m ∃ amb: Ambulance
 Mobilization (amb, inc) ∧ • (amb.Available ∧ InSector(amb,s) )

The unachievability condition B  for this goal is given by

◊ ∃ inc: Incident, s: Sector
inc.Reported ∧ InSector (inc, s)
∧ q≤3m ¬  (∃ amb: Ambulance) amb.Available ∧ InSector(amb,s) 

The unachievability condition is prevented through a subgoal

requiring that in every sector there is always an ambulance avail-
able:

q (∃ amb: Ambulance) amb.Available ∧  InSector(amb, s)

The companion subgoal produced by this tactics is then

∀ inc: Incident, s: Sector
inc.Reported ∧  InSector(inc, s) 
⇒  ◊≤3m ∃ amb: Ambulance

Mobilization (amb, inc) ∧ • (amb.Available ∧ InSector(amb,s) )

∨ ¬  (∃ amb: Ambulance) amb.Available ∧ InSector (amb, s)

The goal obtained requires an available ambulance to be mobi-
lized from the sector in which the incident occurred except if there
is no ambulance available in that sector.

Formal refinement patterns capture the general idea of the
associated tactics. In practice, the formal definitions gener-
ated by a strict application of these patterns may have to be
adapted for better adequacy with the situation at hand.

6. E XA MPL E: A G ENT -BASE D  R EFI NEM E NT FO R  
T H E L O NDO N  A M BUL ANC E SY STE M

We now show how some of the agent-based tactics above
may be combined to build a portion of the goal graph for the
LAS system [LAS93]. The detailed formal derivations are
skipped here for lack of space; the interested reader may
download them from [Let01] where a significant portion of
the LAS goal graph is built formally.

We come back to the goal Achieve[AmbulanceMobilized] which
was seen in Section 4 to be unrealizable by the Computer-
Aided Despatching software agent (CAD) due to lack of
monitorability, lack of controllability and external
unachievability. Figure 6 shows a goal refinement graph
produced by resolving each of these unrealizability prob-
lems.

The lack of monitorability of incident location can be
resolved using the tactics Introduce Tracking Object defined in

¬  B*  G ∨ ¬ B*
with ¬ B* ⇒ ¬ B

G

AccurateIncidentForm

Figure 6 - Applying agent-based tactics for the London Ambulance Service system
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the previous section. A new object IncidentForm is thereby
introduced in the object model to track details about inci-
dents; we obtain the following three subgoals:

Goal Achieve [UrgentCallEncoded]

InformalDef For every urgent call reporting an incident, there
shall be an incident form recording details about the reported
incident. The time needed to handle the call and fill in the inci-
dent form should take no more than f time units.

FormalDef ∀ c: UrgentCall, inc: Incident
Reporting (c, inc)  
⇒ ◊≤f ∃ icf: IncidentForm 

icf.Encoded ∧ Encoding (icf, c)

Goal Maintain [AccurateIncidentForm]

InformalDef The incident form should record the accurate loca-
tion of the incident and the time at which the call was taken.
(Further details about the incident such as the number of
injured persons and the kind of emergency services needed
are ignored in this simplified spec.)

FormalDef ∀ inc: Incident, c: UrgentCall, icf: IncidentForm
Reporting (c, inc) ∧  Encoding (icf, c) 
⇒  icf.Location = inc.Location ∧ icf.CallTime = c.Time

Goal Achieve [AmbulanceMobilizedBasedOnIncidentForm]

InformalDef For every incident form, an ambulance able to
arrive at the incident scene within 11 minutes should be mobi-
lized to the corresponding location. An ambulance should be
mobilized less that 3 minutes after the reception of the call. 

FormalDef ∀ c: UrgentCall, icf: IncidentForm
 @ icf.Encoded

⇒  ◊≤ icf.CallTime+3m ∃ amb: Ambulance
 amb.Mobilized ∧  amb.Destination = icf.Location
∧ • amb.Available 
∧ • TimeDist (amb.Location, icf.Location) ≤ 11

The agent model is enriched in parallel by introducing a
ControlAssistant  agent and assigning the responsibility for the
goals Achieve[UrgentCallEncoded] and Maintain [AccurateInci-
dentForm] to that agent.
The new goal Achieve[AmbulanceMobilizedBasedOnIncident-
Form] is not realizable by the CAD agent due to lack of con-
trollability of ambulance mobilization (actually controlled
by AmbulanceStaff agents). This can be resolved using the
tactics Split Lack of Controllability With Milestone introduced in
Section 5.2  with the following milestone:

M: ∃ al: AllocationOrder, amb: Ambulance
al.Issued ∧ Concerning (al, amb) 
∧ al.DestinationLoc = icf.Location
∧ • amb.Available 
∧ • TimeDist (amb.Location, icf.Location) ≤ 11’

The following two subgoals are obtained using this tactics:
Goal Achieve [AmbulanceAllocatedBasedOnIncidentForm]

InformalDef For every incident form, an available ambulance
able to arrive at the incident scene within 11 minutes should be
allocated to the corresponding location. The ambulance alloca-
tion time should take no more than g time units.

FormalDef ∀ icf: IncidentForm
@ icf.Encoded
⇒  ◊≤g ∃ al: AllocationOrder, amb: Ambulance

al.Issued ∧ Concerning (al, amb)
∧ al.DestinationLoc = icf.Location
∧ • amb.Available 
∧ • TimeDist (amb.Location, icf.Location) ≤ 11

and
Goal Achieve[AllocatedAmbulanceMobilized]

InformalDef  When an ambulance is allocated to an incident
location, it should eventually be mobilized to that location. This
should take no more than h time units. 

FormalDef ∀  al: AllocationOrder, amb: Ambulance, loc: Location
al.Issued ∧ Concerning (al, amb) ∧  al.DestinationLoc = loc 
∧  • amb.Available
⇒  ◊≤h amb.Mobilized ∧ amb.Destination = loc

For simplicity and brevity, we omit further subgoals and
domain properties needed to establish the correctness of this
refinement.

The new subgoal Achieve[AmbulanceAllocatedBasedOnIncident-
Form] is still not realizable by the CAD agent due to the
external unachievability problem propagated from its parent
goals. The unachievability condition for this goal is given
by the assertion

B: ◊ ∃ icf: IncidentForm
@ icf.Encoded

∧ q≤g ¬ ∃ amb: Ambulance
amb.Available 
∧ TimeDist (amb.Location, icf.Location) ≤ 11

Since this goal is the SafetyGoal category, the tactics Prevent
Unachievability  defined in Section 5.2 is used to resolve the
unrealizability problem. The first subgoal is obtained by
strengthening the negation of the unachievability condition:

Goal Maintain [NearAmbulanceAvailability ]

InformalDef  For every location, there should always be an avail-
able ambulance able to arrive at that location within 11 minutes.

FormalDef ∀ loc: Location 
q ∃ amb: Ambulance

 amb.Available ∧ TimeDist (amb.Location, loc) ≤ 11

The second, companion subgoal is then:
Goal Achieve [AmbulanceAllocatedBasedOnIncidentForm 

WhenNearAmbulanceAvailable]

InformalDef  For every incident form, an available ambulance
able to arrive at the incident scene within 11 minutes should be
allocated to the corresponding location except if there is no
such ambulance available. The ambulance allocation time
should take no more than g time units.

FormalDef ∀ icf: IncidentForm
@ icf.Encoded
⇒  ◊≤g ∃ al: AllocationOrder, amb: Ambulance

al.Issued ∧ Concerning (al, amb)
∧ al.DestinationLoc = icf.Location

∧ • amb.Available

∧ • TimeDist (amb.Location, icf.Location) ≤ 11

∨  ¬ ∃ amb: Ambulance
 amb.Available ∧ TimeDist (amb.Location, if.Location) ≤ 11

The latter subgoal is still not realizable by the CAD agent
due to lack of monitorability of the actual location and
availability of ambulances. Our tactics Introduce Tracking
Object  is therefore used again to produce the following three
subgoals:

Goal Maintain[AmbulanceTracked]

InformalDef  Every ambulance is tracked by exactly one Ambu-
lanceInfo object.



FormalDef 

(∀ amb: Ambulance)(∃! ai: AmbulanceInfo) Tracking (ai, amb)
∧  ∀ amb: Ambulance, ∀  ai: AmbulanceInfo

Tracking (ai, amb) ⇒ q Tracking (ai, amb)

Goal Maintain [AccurateAmbulanceStatus&LocationInfo]
InformalDef Information about ambulance availability and loca-

tion should be accurate.
FormalDef ∀ amb: Ambulance, ai: AmbulanceInfo

Tracking (ai, amb)
  ⇒  ai.Available ↔  amb.Available

  ∧  ai.Location = amb.Location

Goal Achieve [AmbulanceAllocatedBasedOnIncidentForm 
andAmbulanceInfoWhenNearAmbulanceAvailable]

InformalDef For every incident form, based on ambulance infor-
mation (status and location), an available ambulance able to
arrive at the incident scene within 11 minutes should be allo-
cated to the corresponding location except if there is no such
ambulance available. The ambulance allocation time should
take no more than g ime units.

FormalDef ∀ icf: IncidentForm
@ if.Encoded
⇒ ◊≤g ∃ al: AllocationOrder, ai: AmbulanceInfo

al.Issued ∧ Concerning (al, amb) 
∧ al.DestinationLoc = icf.Location
∧ • ai.Available 
∧ • TimeDist (ai.Location, icf.Location) ≤ 11

∨  ¬ ∃ ai: AmbulanceInfo
ai.Available ∧  TimeDist (ai.Location, icf.Location) ≤ 11

This last subgoal is now realizable by the CAD software
agent. The accuracy subgoal needs to be refined further, and
leads to alternative responsibility assignments for the Ambu-
lanceStaff, the RadioOperator, the MobileDataTerminal, the
AmbulanceTracking and the CAD agents.
Obstacle analysis may then be applied to the model and
specification to produce a more robust model/specification,
see [Lam00a] for an application of such analysis to this case
study.

7. CO NCL USI O N

This paper has reported on ongoing efforts to provide more
constructive guidance in the requirements engineering pro-
cess. The techniques proposed here allow alternative goal
refinements and agent assignments to be explored in a sys-
tematic way. The techniques are grounded on a simple for-
mal model of agent responsibility, monitoring and control.
A pragmatic counterpart of a semantic characterization of
goal unrealizability was seen to play a central role in deriv-
ing a set of specification elaboration tactics that cover the
entire space of unrealizability problems and guarantee strict
progress towards realizable goals and assignable agents.
Several of the tactics pay significant attention to accuracy
goals. The role of these non-functional goals is often
neglected in the literature on formal specification; they are
known to be responsible for many serious accidents credited
to poor requirements specifications.
In our experience, the systematic identification and resolu-
tion of unrealizability problems provides useful, practical
guidance for elaborating goal graphs and associated respon-
sibility assignments. We observed that by applying these

tactics systematically we have been able to build fairly large
goal graphs significantly faster than before.

Labelling goal refinements with the tactics used to produce
them makes complex goal graphs easier to understand. Each
refinement step is motivated by the resolution of an unreal-
izability problem, and the tactics applied to produce the
refinement documents how this problem was solved.

Although grounded on a formal framework, the tactics can
also be used by someone familiar with their repeated use in
shortcut mode , to produce refinements systematically with-
out necessarily getting into detailed formalizations (as we
did in the previous section). In any case, much creative
thinking and domain knowledge is still required to instanti-
ate the tactics and combine them in a useful way. The tactics
provide a way to organize such creative thinking; they do
not automatically generate all alternative system proposals
by themselves, of course.

A tool for doing all clerical work of retrieving tactics that
match the current specification state, providing interactive
help in their instantiation and application, and recording
alternative refinements and assignments for later use would
obviously be of great help. Frequently, however, the strict
application of formal refinement patterns produces first-
sketch formal definitions that need to be adapted manually
to fit the details of the particular application.

For a goal raising several unrealizability problems, it is not
a priori clear in what order those problems should be
resolved. During the actual elaboration of the goal graph for
complex systems such as the LAS and BART systems
[Let01], we frequently switched the order in which the
agent-based tactics were applied. This did not result in dif-
ferent requirements at the end of the requirements elabora-
tion process but had an impact on the definition of
intermediate goals and on the presentation of the goal graph.
The order of application of tactics that was finally chosen
was mostly driven by our objective of making the goal
graph and the formal definition of goals as easy to under-
stand as possible.

The techniques presented in this paper provide support for
generating alternative refinements and assignments through
the use of alternative tactics; they provide no support for
evaluating alternatives and selecting some preferable one
among them. This is an issue we start working on; in partic-
ular, we are investigating the applicability in our context of
qualitative frameworks in the spirit of [Chu00].
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